
DRAM-less: Hardware Acceleration of Data Processing with New Memory

Jie Zhang1, Gyuyoung Park1, David Donofrio2, John Shalf2, Myoungsoo Jung1

Computer Architecture and Memory Systems Laboratory,
Korea Advanced Institute of Science and Technology (KAIST)1, Lawrence Berkeley National Laboratory2

http://camelab.org

Abstract—General purpose hardware accelerators become a
major data processing resource in many computing domains.
However, the processing capability of hardware accelerators
is often limited by costly software overheads and memory
copies to support compulsory data movement between differ-
ent processors and solid-state drives. This in turn wastes a
significant amount of energy in modern accelerated systems. In
this work, we propose, DRAM-less, a hardware automation
approach that integrates many state-of-the-art phase change
memory (PRAM) modules into its data processing fabric
to dramatically reduce the unnecessary data copies with a
minimum of software modifications. We implement a new
memory controller that plugs a real 3x nm multi-partition
PRAM to 28nm FPGA logic cells and interoperate its design
into a PCIe accelerator emulation platform. The evaluation
results reveal that DRAM-less achieves, on average, 47%
better performance than advanced acceleration approaches
that use a peer-to-peer DMA (between a discrete accelerator
and an SSD), while consuming only 19% of the total energy
of such accelerated systems.

Keywords-PRAM; near-data processing; accelerator; FPGA
controller; data movement;

I. INTRODUCTION

Multi-core based accelerators such as graphics processing

units (GPUs) or many integrated cores (MICs) have in recent

years improved their computational power by employing

hundreds to thousands of cores [1], [2]. The integration of

hardware accelerators with fully programmable and mas-

sively parallel coprocessors accelerates a wide spectrum of

scientific computations and data analytics [4], [5], [6]. Since

modern hardware accelerators typically offer one order of

magnitude speed-up, compared to CPU-only computing, ac-

celerators have become a major data processing resource in

many computing domains, ranging from high-performance

computing to embedded systems [7], [8].

Despite notable advances in such massively parallel com-

puting, the processing capability of modern hardware ac-

celerators suffer from serious performance degradation in

diverse data-intensive and streaming applications due to

inefficient data transfers [9], [10], [11]. Specifically, in most

of the accelerated systems, it is inevitable to move and copy

in/output data across multiple physical and logical interface

boundaries that exist between the accelerators and storage

[12], [13], [14]. Such a long datapath from the SSDs to the

accelerators unfortunately consumes a significant amount of

energy, irrespective of their computing efficiency.

(a) Performance. (b) Energy consumption.

Figure 1: Performance degradation in near-data pro-
cessing due to data movement overheads.

To be precise, the data shown in Figure 1 is from an

empirical evaluation that we performed on a real accelerated

system. The system employs a high-performance multi-

core based accelerator [15] and an advanced solid state

drive (SSD) [16] through two different PCIe slots [17].

In this evaluation, we execute representative data-intensive

workloads [18] on the accelerated system and compares

the results to those of an idealized environment that has

enough memory space to accommodate all data within the

accelerator. We normalize application-level performance and

energy consumption of the accelerated system with those of

the ideal system. As shown in the figure, the performance of
such data processing on the accelerated system degrades as
much as 74%, while consuming energy more than the ideal
system by 9 times, on average. This is because the SSD ac-

cess requests, generated by computation kernels operating in

the target accelerator, introduce many software interventions

at the host side. Unfortunately, the SSD accesses consume

most CPU cycles to move target data among multiple PCIe

physical interconnections and software interface barriers.

To address these challenges, we propose DRAM-less,

a hardware automated near-data processing approach that

removes the excessive software interventions and repeti-

tive memory copies imposed by the data transfers across

the multiple logical and physical interface boundaries. Our

DRAM-less integrates a new type of 3x nm (i.e., 30 nm ∼
39 nm) multi-partition phase change random access memory

(PRAM) into a discrete accelerator’s network fabric with

multiple low-power processing units.

A challenge to this tight integration is that the PRAM

memory’s operations are completely different from DRAM

operations, which limits our ability to leverage the current

DRAM control logic for near-data processing. In addition,

287

2020 IEEE International Symposium on High Performance Computer Architecture (HPCA)

2378-203X/20/$31.00 ©2020 IEEE
DOI 10.1109/HPCA47549.2020.00032

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 08,2020 at 02:44:53 UTC from IEEE Xplore. Restrictions apply.

the new memory cannot be managed by a conventional

storage firmware that modern SSDs employ because the

firmware execution latency becomes a performance bot-

tleneck of PRAM management (cf. Section III-B). Thus,

we fully automate the PRAM subsystem in hardware and

integrate it into the data processing accelerator. In this

design, computation kernels can be executed from the on-

chip cache of each low-power core, and process massive

data by directly accessing the PRAMs using a set of tradi-

tional “load/store” instructions. We implement all necessary

hardware components of the automated memory subsystem

in a 28 nm technology FPGA with a real PRAM device.

To explore the full design space of our accelerator, we

also implement the proposed DRAM-less on a PCIe-based

hardware platform with commercially available multi-core

processors, similar to TMS320C6 series [19], and internally

emulate a wide spectrum of storage devices [20], [21],

[22], [23]. This emulation platform can employ various non-

volatile memory (NVM) technologies as its main mem-

ory and execute diverse near-data processing applications

[18]. The evaluation results reveal that, our DRAM-less
achieves, on average, 47% better performance than the

advanced accelerator approaches that use a peer-to-peer

zero-overhead DMA (between an SSD and accelerator) [13],

[14], while consuming only 19% of the total energy of

such advanced accelerations. The main contributions can be

summarized as follows:

• DRAM-less design for efficient data processing. We

propose a hardware-automated memory subsystem that em-

ploys a crosspoint-based PRAM array for a data processing

accelerator to replace a capacity-limited DRAM. The large

capacity of our PRAM subsystem can persistently store

extensive data, which can also eliminate the overheads of

accessing the host-side in/output data from an SSD. For high

throughput, DRAM-less tightly connects the subsystem

to all low-power multi-core processors of the accelerator

through a conventional memory interface [24]. Specifically,

our memory subsystem loads data from the underlying

PRAM modules and directly sends the data to the L2 cache

of each processing element (or store them to the PRAMs),

which are compatible with traditional memory instructions.

• Hardware automation for a new memory. We automate

the PRAM subsystem by implementing our own PRAM

400 MHz physical layer and controller on a Virtex-7 FPGA

platform [25] from the ground up with state-of-the-art 3x nm
multi-partition PRAM engineering samples, which remove

all firmware modules to access data from the I/O path of our

accelerator platform. For efficient near-data processing, we

also propose two PRAM-aware memory schedulers: i) an
interleaving method that considers multiple row buffers and

array partitions within the PRAM and ii) a selective erasing
technique to further reduce the overheads of the PRAM over-

writes. While the new memory interleaving technique can

hide the memory access latency behind the corresponding

data transfer time by 40%, the proposed selective erasing

approach shortens the overall PRAM write latency by 44%,

compared to a non-optimized PRAM subsystem.

• New near data processing models. An accelerator and

SSD employed by a conventional computing architecture re-

quires the support of many system software modules for their

I/O management. This introduces significant communication

overheads to transfer data between devices. In addition,

traditional kernel scheduling methods need assistance from

the host processor to coordinate the kernel executions in

the target accelerator [26], which further increase software

overheads. To address this, we propose new programming

and kernel execution models, which can minimize the over-

heads imposed by the host-side software interventions. In

our design, the data are not transferred per kernel execution

as all processing elements can directly access PRAMs in

the target accelerator. In addition, DRAM-less allocates a

dedicated processing element to handle kernel images and

schedule data processing tasks, which can simplify the near

data processing models and make them easy-to-use.

II. BACKGROUND

In this section, we will introduce a multi-partition archi-

tecture of PRAM and its memory interface, which will be

used for our proposed DRAM-less.

A. Microarchitecture

Storage core. Figures 2a and 2b illustrate the PRAM storage

cell structure and its thermal characteristics, respectively.

PRAMs write data (i.e., program) by quickly heating chalco-

genide glass, an alloy of germanium, antimony, and tellurium

(GeSbTe), which is called GST [27], [28]. Based on the

applied temperature, the storage core cell can be “phase

changed” to either crystalline or amorphous form, which

are referred to as SET and RESET, respectively [27], [29],

[30]. As shown in Figure 2b, if the temperature is near

300 ◦C (Tcys), GST exhibits a low resistance that represents

the digit “1”. If the temperature is higher than 600◦C (Tmelt),

the resistance of GST becomes higher, and it indicates the

digit “0” [31], [32], [29]. In contrast to the program process,

a read process only requires sensing the target resistance,

which can be performed at room temperature (Troom). Be-

cause Tcrys and Tmelt should be maintained for a while,

SET pulse width is much longer than RESET or READ

pulse widths. A PRAM overwrite practically comprises a

sequence of RESET and SET processes [33], [34], [35], [36].

Practically, this in turn makes the write latency longer than

the read [37]. To address the performance asymmetry issue,

our PRAM employs multiple row buffers, and its bank is

composed of many storage arrays, referred to as partitions.

Multi-row buffers. Figure 3a depicts a high-level view

of our PRAM and the corresponding interface, which can

be integrated into the processing elements (PEs) of the

accelerator via our PRAM controllers. Each PRAM module

288

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 08,2020 at 02:44:53 UTC from IEEE Xplore. Restrictions apply.

�
�
�
�
�
�
�

	
��
��

�

�

����
��

������������

�
�
�
�
�
�
�
�

	

�
�
�
�
�
�

	������

��������

��������������

(a) PRAM cell detail.
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
	
�
�
�

�

�������
�����

����	

��������

��
��������
�������

����������

����

��

�

���������
�
�������

�

���

�	
�������

���

��	 ��!�

(b) PRAM thermal characteristics.

Figure 2: PRAM cell and thermal features.
employs multiple row buffers that connect the underlying

storage cores (array) and exposes them through a low-

power double data rate interface (LPDDR2-NVM) [24]. To

make the multiple row buffers identical, each row buffer

is logically paired by an address buffer and a data buffer,

and selected by a given buffer identification number. These

address and data buffers are referred to as row address buffer
(RAB) and row data buffer (RDB), respectively. While the

RAB can accommodate the address and command of an

incoming request, the RDB buffers the 256-bit contents of

the underlying PRAM bank. Since the address space of our

multi-partition PRAM is greater than a traditional DRAM

address space, the target address bits are shipped to the

PRAM row decoder through two separate address parts: i)

an upper row address and ii) a lower row address. The upper

row address can be accommodated by a RAB, whereas the

lower row address can be directly delivered to the target

decoder via our FPGA memory controller. For a read, if the

target data is in a RDB, the data can be directly transferred

from the row buffer to the buffer address (BA) pins. For

a write, our PRAM employs an additional internal buffer,

called program buffer (cf. Section II-B).

Multi-partition architecture. One of the ways to shorten

the latency of a PRAM access is to maximize array-level

parallelism. The new 3x nm PRAM technology employs

a multi-partition architecture that can serve 256-bit data

in parallel. As shown in Figure 3b, a single PRAM bank

employs 16 partitions, each containing 64 sub-arrays, which

are referred to as resistive tiles. Individual tiles employ many

PRAM cores with 2048 bitlines (BLs) and 4096 wordlines

(WLs). To reduce the parasitic resistances of BLs and WLs,

and to address the sneak path issue [38], [39], [40], a

partition is split into two parts (referred to as half partitions).

Each partition employs a local Y-decoder (LYDEC) on both

sides of the tile. It also groups every two tiles as a block
by using a dual-WL scheme [41]. To maximize the degree

of parallelism, each tile within a partition is connected to a

sub-wordline driver (SWD), and all SWDs in the partition

are connected to the main wordline driver (MWD). This

new architecture enables a PRAM bank to simultaneously

perform 64 I/O operations per half partition, which can

theoretically perform a 128-bit parallel data access for each

partition. Lastly, this architecture locates the sense amplifiers

and write drivers in front of each bank, which are connected

to the multi-row buffers (RDBs). Through our empirical

evaluations, we observed that our PRAM’s multi-partition

architecture exhibits a longer program latency than the

latency originally reported in [42] (cf. Section VI). However,

it performs 256-bit parallel I/O operations at bank-level,

which is much wider than the level at which the previous

PRAM technologies operate [43], thereby quickly servicing

the memory references coming from processing elements.

B. New Memory Interface Protocol

Our new multi-partition PRAMs provide different mem-

ory arrays, row buffer designs and cell characteristics,

compared to traditional DRAMs. This makes conventional

DRAM protocols and programming methods infeasible to

apply in a straightforward manner.

Three-phase addressing. For this reason, our PRAM em-

ploys LPDDR2-NVM to access all of its internals, whose

command set to operate is different with that of conventional

DDR interface protocols. Specifically, to enable a large

memory space of PRAM over a limited set of I/O pins,

LPDDR2-NVM uses a new interface protocol, called three-
phase addressing. LPDDR2-NVM introduces two different

addressing phases (i.e., pre-active phase and activate phase)

in transferring a complete row address to the row decoder

of a PRAM bank, whereas it transfers the column address

in the third addressing phase (i.e., read/write phase). In a

pre-active phase, an external memory controller can select

a RAB by sending a BA selection signal and stores the

upper row address (associated with the target row) into

the selected RAB. The controller then needs to send the

remaining lower row address to the target PRAM bank,

such that it can compose the actual row address by merging

the lower row address with the memory address (retrieved

from the selected RAB). In the meantime, the target PRAM

module loads and stores the row data to the RDB (associated

with the RAB), called an activate phase. After this activate

phase, a specific data location within the selected RDB (i.e.,

column address) can be delivered by a read/write phase
command. If read, the target data will be available to pull

out from the designated RDB for each interface clock signal.

Overlay window and program buffer. Writing to a stor-

age core directly (by referring the RDB) will suspend all

operations targeting the corresponding PRAM module. To

address this, our new PRAM introduces a special set of

registers (overlay window) and a buffer (program buffer),

each respectively being related to a write operation handling

and non-blocking write management. Figure 4 shows how

the overlay window and program buffer are connected to

the address space of a PRAM module. The program buffer

is located in front of the multiple PRAM partitions with

a write driver, and its addresses are mapped to the end of

overlay window space. As shown in the left of such figure,

the overlay window contains 128-byte meta-information

(comprising window size, buffer offset, and buffer size)

289

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 08,2020 at 02:44:53 UTC from IEEE Xplore. Restrictions apply.

������� �������

	
��������������

�������	�
���

��������������������� ������������������

!��������������"#�����

�
�
�

�������	

�
�
�

�
�
�

�
�
�

�������	

�
�
�

�
�
�

�$��%������������������������������������

���
�����

Figure 3: Internal architecture of our multi-partition phase change random access memory (PRAM).

���������	

���������	�

���������	�

���������	�

����	�����

����

�����

������

�������

������

 �

!�"

�������

������

�����

��#�

�!�

�!�

�!�

�!�

$�!!��

�%

��

���

�%

��&&

����	�������

'
"
�
�
(
�
�
	

�
�
�
�
)

�������
�%%

��(*#���
�+

����

Figure 4: Overlay window architecture.
and a set of control registers that include command code,

data address, execution and status registers. The address

range of this overlay window can be mapped to anywhere

of PRAM address space through an overlay window base
address (OWBA). After configuring the OWBA, an external

memory controller can write data into the program buffer

via the three-phase addressing.

Whenever the host requires to persistently program them

to a PRAM partition, its memory controller should initiate

the program by updating command and execute registers

of the overlay window. The target PRAM module then

automatically fetches the data from the program buffer

and stores it into the designated PRAM partition, based

on the row address. Once the PRAM write begins, the

external controller can check up the operation progress of

target memory partition via the status register existing in

the overlay window. These I/O operations via the overlay

window are useful if there is a high data locality and

long request interval. This is because the overlay window

can be in parallel mapped to other addresses while writing

data to the target. All register manipulations for the over-

lay window (and program buffer) should be performed by

obeying the aforementioned three-phase addressing protocol.

All these new features are not observed by conventional

DRAM and even other flash technologies. Therefore, a new

PRAM control logic is required appropriately translating

an incoming memory instruction to multiple three-phasing

addressing operations and controlling all LPDDR2-NVM

timing parameters. In addition, the new controller logic

needs to manage the aforementioned internal resources for

better performance, such as multiple row buffers, program

buffers, and overlay windows.

III. HIGH-LEVEL VIEW OF DRAM-LESS

In this section, we will analyze the root causes of perfor-

mance degradation and high energy consumption issues (cf.

Figure 1) and explain the architectural components that aim

to eliminate such overhead.

A. Challenges

Figure 5 compares the architecture design and communi-

cation protocol between a conventional accelerated system

and a system that employs our DRAM-less architecture.

The accelerated system employs a CPU, an accelerator and

an SSD as its external storage (Figure 5a). To prepare data

for the accelerator, the conventional hardware acceleration

approach requires retrieving a large amount of low-level

data (in the form of files) from the SSD and deserializes

them as a representation of objects within the host’s DRAM.

The host then transfers the data to the internal DRAM

of the accelerator. Once the accelerator completes its data

processing task(s), the results are written back to the SSD

in an inverse order of data loading procedure. In this data

transfer model, a CPU is required to frequently intervene

to move the data among multiple user applications and OS

modules. As the hardware accelerator and SSD devices, in

practice, employ different software stacks, such interventions

introduce many user/kernel mode switches and redundant

data copies, which result in the waste of many CPU cycles.

To reduce these software overhead and redundant memory

copies, as shown in Figure 5b, we build a hardware auto-

mated PRAM subsystem and tightly integrate it in the multi-

core accelerator. In this design, we replace the accelerator-

side DRAM with our proposed PRAM subsystem and allows

all processing elements to access PRAM over a set of

conventional memory instructions such as loads and stores.

Since the large capacity of PRAM can accommodate a whole

set of data to process, applications in our DRAM-less
directly load the input data from the internal PRAMs without

an external storage access. Consequently, as shown in Figure

5b, the host needs to prepare only computation kernel(s)

without any input preparations (a); it can simply issue

the kernel to the target hardware accelerator for its exe-

cution (b). We also implement an FPGA-based controller

to automate all data accesses in PRAM modules, which

fully complies with the conventional memory instructions,

DRAM-less can remove the data management (filesystem

and storage stack) from its data processing I/O path.

290

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 08,2020 at 02:44:53 UTC from IEEE Xplore. Restrictions apply.

����

��

�	�

�
�
�
�
�
�
�
	
	

� �����
��
��������

�������

� ��
����������������

�������������

� �����������

����������������

�������	
��������������������������

�

�

�����

��

���
��

����

������

��
��

���

�

!

"

#

$

� �

��

��

�� ��

�� �	

��

	%����

��

�&��������
'�� �

���(����

�

���
��
��'���

)����'��������
���
)

 �����
��('��
�����*

!
�����
���������������

�����&

" ��+��������'�����
)�

�����
����&�'�
�����*

$
�����
��
���+����

����'����)

, ��
������)

�������

���&�)

�-��&�'�
��.('��
�/0

��
������)

��������������1

������)

�������

�� ��+����
��'���2�'�

�� �����
����&�'�
�������&

�� ���&�)

-('��
��.��&�'�
�/��

��
������)

������
��

��
����
��������&

�	
����
���'����
��

�����&

�� �������'���)����'���
�� ��

�3�

����

4���

5�')��

6��

����

�������
��

�
�
�
�

�
�
�
�
	

�
�
�
�
�
�
�
�

�3�

����

4���

5�')��

����

����

�������
��

���
��

6��

����

���	
�

�
�
�

	��	�

Figure 5: Comparison between a traditional accelerated approach and our DRAM-less.

�� �� ��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
	

���	

��������

���	��

��	�

��� �
�

�
�
�

�
�
�
�
�

������	��

�
�
�
�

�
�
�
�

���

�����

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

���

��

������

��

���

��

���

��

���

��

���

����	��� ��

�
�
�

�	

�!

�"�

�!

���

�

���

#

������

��!

���	������

��$%�

&'�()

��*

���	������

'+��

��$%�

'+��

�'

���	������'+��

��	

���������

������

���

��	

���������

!��

'+��

�')�

�')�

&',# &',#

��$%�

+�',#

!��

!��

-�.$%/���'

-�.$%/����'+��

'+��

�������	
���������������� ���������������������������������

�� �� ��

������	��

��

���

��

���

�����

'+��

Figure 6: DRAM-less architecture and processing elements.

Figure 7: Performance degradation of employing tradi-
tional firmware compared to an oracle PRAM controller.

B. DRAM-less Data Processing Architecture

Processor. Figure 6 illustrates a high-level view of the

proposed DRAM-less’s internal structure and microarchi-

tecture of processing element (PE) therein [44]. The com-

putation core of PE is designed by a multi-way single

instruction, multiple data (SIMD) architecture, which is

aimed to improve the performance of vector data processing.

As shown in Figure 6b, A PE contains two sets of four

functional units (.M, .L, .S, and .D) and two general-purpose

registers (reg A and reg B), which are connected to the L1

instruction cache through an instruction fetch module. While

two .D functional units execute load and store instructions,

.M, .S, and .L perform multiplications, general sets of

arithmetic, logical and branch function, respectively. That is,

each PE has two general-purpose functional units (.S units)

and two load/store units (.D units), and all they operate on

a “RISC-compatible ISA”. Thus, a general-purpose appli-

cation can be easily converted as a near-data processing

kernel without or with a few modifications. Although not

mandatory, programmers can accelerate vector processing

further by embedding DSP-intrinsic that activates two .M

units, such as multi-way floating-point multiply/add and 16-

bit integer intrinsic, which merges multiple multiply and

accumulation operations into one. In total, there are 64

functional units in the accelerator, which can offer 358.4

Gops/s data processing capability. We choose this multicore

architecture for our accelerator prototype implementation as

a representative low-power processor 1.

Datapath. As shown in Figure 6a, multiple PEs have their

own L1 and L2 caches, which are connected to the crossbar

network via a master port and a slave port. To process data

in parallel, most PEs of our DRAM-less are allocated in

handling the computational kernel provided by the host.

While these PEs, referred to as agents, perform near-data

processing, we designate one of PEs as a server to schedule

all kernel executions on the agents by resuming and suspend-

ing them via a “power/sleep controller” (PSC). This server

also manages the PRAM traffic requested by other agents.

The server employs a memory controller unit (MCU) that

takes over the L2 cache misses of an agent and administrates

all the associated PRAM accesses by collaborating with the

underlying FPGA controllers. Each agent’s L2 controller

can generate memory requests through two on-chip memory

controllers (MC1/MC2). The MC1 and MC2 connect MCU

and FPGA through 256-bit bus and 128-bit bus, respectively

(cf. Figure 6b). The FPGA contains two separate LPDDR2-

NVM channels, each channel being able to contain 16 400-

MHz PRAM modules in our design. The server simply

sends a memory read or write message through the bus,

and then, the FPGA controllers take over all LPDDR2-NVM

transactions (the corresponding messages) upon PRAMs.

All these internal components are linked by the crossbar

network, which is also bridged to DRAM-less’s PCIe

module in enabling a host to communicate with the server.

PRAM subsystem. Even though the server and MCU handle

1Recently, [2] examines multiple low-power accelerators, including a
256-core GPU [45], Kintex FPGA 32-lanes [25] and RISC-based manycore
[46]. It reports that the bandwidth per watt of our platform is better than
that of [25] and [46] by 85× and 9×, respectively, and similar to what [45]
provides.

291

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 08,2020 at 02:44:53 UTC from IEEE Xplore. Restrictions apply.

����

���

����

���

	
�

��� ��� ���

���������������

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���

����

����

����

����

����

��	��

������

�����	

���������

����	���

�������

������

���������

����

����

�����

�����

Figure 8: Kernel offloading and execution.

all the read/write operations coming from parallel PEs, their

memory requests should be converted to LPDDR2-NVM

transactions and managed by the three-phase addressing

protocol. One potential solution is to employ conventional

firmware, existing in Optane SSD, to manage PRAM.

However, we observe that the conventional firmware can

take longer execution time than PRAM access latency.

To be precise, we compare the performance between an

accelerator with the conventional firmware and an oracle

environment that manages PRAM with no overhead. Figure

7 shows the system performance degradation of using the

firmware compared to the oracle environment. The firmware

degrades the system performance by upto 80% in the data-

intensive workloads, due to its long execution time. To

mitigate the performance penalty, we design a hardware-

automated PRAM subsystem and controller to manage mul-

tiple row/program buffers and govern three-phase addressing

protocol, respectively. Specifically, our PRAM controller

within the FPGA can selectively skip parts of the three

addressing phases to reduce the I/O latency by being aware

of the states of PRAM internal resources (e.g., RAB and

RDB). In cases where the target’s upper row address already

exists in a RAB, the controller skips the corresponding

preactive phase and directly enables the activate phase. If

the target data are ready on a RDB, the activate phase can

be skipped, which can further reduce the I/O latency. On

the other hand, all write requests are performed through the

program buffer in the overlay window associated with the

designated PRAM module. To reduce the number of PRAM

accesses, the server initiates a memory request based on

512 bytes per channel (32 bytes per bank) by leveraging

its L2 cache, and tries to prefetch data by using all RDBs

across different banks. Since the current memory interface

generator (MIG) “does not” support PRAM, in addition

to the memory controller, we implement our own PRAM

physical layer on a 28nm Xilinx FPGA 19K logic cells

[25], which manage our multi-partition PRAM modules

over LPDDR2-NVM, as shown in Figure 9a. Our physical

layer (PHY) addresses the differences of operating frequency

between PRAM and FPGA at 400MHz.

IV. DATA PROCESSING MODELS

Figure 8 shows an overview of kernel offloading and

execution models of our DRAM-less. To execute a near-

data processing task, the host needs to prepare its kernel

�������	��
����������������������������������

�����������������

�����������

(a) Memory controller prototype.

���

���
���

�

�

�

����

���� �!"

�#$

%

&
'
�
�
	

(
!
)

*
�

'

�
�

��

+ %

+

%

,-

&������������	

&�������'�
����

�.��

/
&"

��)�

�.��

0"1��"�&*&

(b) Kernel controls.

Figure 9: Prototype and kernel controls.

image and offload the image to the PRAM subsystem of

DRAM-less. DRAM-less then automatically schedules

the offloaded tasks across the multiple PEs and executes

them on its internal PRAM address space. Since the PEs can

directly access data from PRAM via load/store instructions,

the existing data processing applications do not require

any source-level modifications. In addition, our design does

not need to go through a complicated storage software

stack at the host-side for its data processing. Once the

task completes, DRAM-less responds to the host with a

completion message or an execution result. In this section,

we will explain these execution/programming models of our

DRAM-less in details.

Kernel offload and execution methods. Traditional kernel

scheduling methods including message passing interface

(MPI) [26] and compiling offloading features require the

assistance of the host to coordinate the kernel scheduling in

the accelerators. In contrast, DRAM-less can fully eliminate

the intervention of the host. Figure 9b shows the process

of a kernel offloading and execution for our proposed

DRAM-less. At the beginning of data processing, the

host can issue a PCIe interrupt to DRAM-less, which is

internally forwarded from the PCIe module to the server (�).

From this point onward, all kernel codes can be downloaded

into a designated image space on PRAMs through the server

if it needs (�). Once the kernel download is completed,

the host can process other tasks without waiting for the

completion of the accelerator (�), while the server schedules

the downloaded kernels to each available agent. The server

puts the target agent in a sleep mode by using PSC (�).

The server then stores the image address of PRAM to L2

cache of the target agent as a boot address (�). After saving

the image address, the server revokes the agent via PSC (�).

Then, the agent will load and execute the kernel (�). During

this execution step, all the memory requests, generated by

the L2 cache misses, are issued to the server’s MCU (a©). It

consequently initiates DMA (b©) between the target PE’s L2

cache and the overlay window or RDBs of the target PRAM

(c©). Note that the underlying PRAMs are considered as

a private resource of the accelerator. Therefore the host is

prohibited to directly access the PRAMs as a block storage

through a filesystem interface. To address this, we employ

the server of our accelerator to manage the data requests

292

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 08,2020 at 02:44:53 UTC from IEEE Xplore. Restrictions apply.

���������	
�����������������������������������

��������������������������

��������	
��� ��������
����

������������	
����������

�������������������������������

������ ���������������

����������������

����������������������������

������������ �����!�� �" �������

������ �������

�����#����$����%���$&'()�&��*�������"����������

�����"�����

�	��

�

�

������

������	
������������

�����

������	
������������

�…���

������

������	
������������

���������

�

����������	�

Figure 10: DRAM-less’s programming model.

coming from the host. For example, the host can ask the

server to bring data from the host-side system memory

via PCIe messages. The server then records the data to

PRAM-subsystem by issuing memory write requests over

our memory controllers.

Programming model. Figure 10 shows the programming

model of our DRAM-less, which is associated with its

communication protocol (cf. Figure 5b). Users can pack and

offload the kernel(s) to the accelerator via packData and

pushData application interfaces. The formal parameters of

packData interface include metadata (i.e., meta), which

defines the accelerator’s memory address to download code

segments for multiple applications (e.g., app0, app1, ...,
appN) and shared common codes (i.e., shared). On the other

hand, the parameters of pushData interface contain the

pointer, which refers to the host’s memory address of the

image (i.e., img) and the accelerator’s memory address to

download (a©). Once the kernel image has arrived in the

accelerator’s memory, the server starts to extract metadata

information from the image via unpackData interface and

loads the code segments to the target addresses described

in metadata (i.e., load). After parsing the kernel image,

the server starts to check each PE for availability (i.e.,

polling). If one PE is in idle, the server will power

off this PE, assign a kernel to the PE by updating PE’s

magic address with kernel’s boot entry address, and reboot

such PE (b©). The PE keeps continuing the execution until

completing the data processing (c©). In our emulation work,

we leveraged a set of TI code generation tools [47], [48],

[49]. Note that the memory protection and access control are

regulated by aforementioned tools, which may be limited for

other accelerators.

V. HARDWARE AUTOMATION DETAILS

A. Microarchitecture Awareness

Timing management. Figures 11a and 11b illustrate the

write and read timing diagrams of our PRAM modules,

respectively. A row access for both reads and writes consists

of the pre-active and activate phase operations described in

three-phase addressing. Specifically, the pre-active is similar

to the row precharge time (i.e., tRP) of conventional DDR,

but it handles the target RAB to update an upper row address

within tRP. The activate time can be classified by a row

address to column address delay (i.e., tRCD), which includes

"�#��� ��$ ���" %& �"'�� �()��	

$
�����#���"�(� *���#��� %
���

"����(� ��+�*����� ������*�����
"����(
��

�%�*

����*

��

�*(

,#�
����+��-�+

(a) Write timing diagram.

"����� ��� ��	" �& �"
�	. ��)��

���������	�"���� �������� ����

���������

��� �"�

"������� ���������� 	������������
"���������

(b) Read timing diagram.

Figure 11: PRAM module timing diagrams.

���

��� �����	
�� � ��������

���

�������������

�� ��������� ����

���� ���� �� �����

�������������

��� ��� ��!� "� �

����

��#�����$

%��

���

%
��

���

�

�

�

�

&������'�

&������'�

Figure 12: Multi-resource aware interleaving.
the address composition time for target row location (by

combining the values stored in the target RAB and the lower

row address) and the memory operation time. In tRCD,

the target module also checks whether the composed row

address is in the range of overlay window or not. If the

designated address is matched (with the ones of overlay

windows), the data associated with the target row address

will be processed by the register sets and stored into the

program buffer, not actual PRAM storage cores. Otherwise,

the target data will be referred to by the designated PRAM

array. This tRCD also includes the time to fetch the data

from the target row to RDB. In a read phase, it consumes

a read preamble period that consists of a read latency

(i.e., RL) and data signal strobe output access time (i.e.,

tDQSCK). The data is then delivered out from the RDB

by referring to the column address, which is embedded in

the read phase command, during the data burst time (i.e.,

tBURST). The memory timing for a write phase command

is not much different with that for such read phase command.

Specifically, instead of RL, it exhibits a write latency (i.e.,

WL) in a write preamble period. The program time sequence

also includes a write recovery period (i.e., tWR) to guarantee

that all data in the program buffer are programmed to target

PRAM array.

Multi-resource aware interleaving. To reduce the latency

of data movements between PRAMs and L2 caches, we

schedule memory requests by being aware of PRAM’s mul-

tiple partitions and row-buffers. Specifically, each PRAM

module in the proposed DRAM-less can sense data out

from a partition to a RDB, while transferring data out from

other RDB(s) to target cache(s), in parallel. Thus, one can

fully overlap the times to transfer data with the latency to

293

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 08,2020 at 02:44:53 UTC from IEEE Xplore. Restrictions apply.

Figure 13: Interleaving and selective erasing.

$�	���,�

��*�,�		

��

��*�,�		

��

�-

�.�

�/�

����	��,

�����0��12�3

4�������5��

�������	�
���

0��12�3

������

��
	�,�	

��
	�,�	

��
	�,�	

��
	�,�	

�.0��2�3

�
�

�����

��6�

�$7

�������	�
���

����

����

���

���

8������

�
�
	
�
8
$

$
�
�
�
�

�

�

	
�
9
:

Figure 14: Implementation of FPGA controller.

access a memory partition. Figure 12 shows an example of

our multi-resource aware interleaving; there are two requests

(req-0/req-1), each targeting a different partition but within

a same chip. Let us suppose that the pre-active and active

commands of req-0 were initiated just before issuing the

pre-active command of req-1 (1). While it takes tRP and

tRCD related to req-1, the controller can send the read phase

command for the different target partition (with a different

RDB address). Since the RDB associated with req-0 is ready

to transfer, during tRCD of req-1 (2 and 4), the controller

can bring req-0 data out and place them on the target L2

cache, which consumes RL, tDQSS and tBURST of req-

0, in tandem (3). Once it has transferred all data, req-

1’s RL, tDQSS and tBURST can be processed while the

controller is accessing another partition (5). In this way, we

can make the data transfers invisible to agent PEs. Note that

our multi-resource aware interleaving is different with bank

interleaving [50] in the sense that all the memory requests

interleaved within a single bank.

Selective erasing. A program is in practice composed by

RESET and SET, which introduces a long write latency.

Similar to other NVMs (e.g., flash), PRAM also supports

erase operations that reset a large number of cells (greater

than cells in a program unit) to pristine state. Overwrites

on erased cells only require SET operations, which can

reduce the write latency. We evaluated performance of the

erase operations on our multi-partition PRAM modules, and

observed that the latency of erase operation itself is around

60 ms, which is 3K times longer than that of an overwrite.

This extremely long erase latency can, unfortunately, block

all coming requests to the target partition. To address this

challenge, we investigate a simple but effective optimization

for overwrites, referred to as selective erasing, which can

reduce the overwrite latency without the penalty of erase

operations. In contrast to the erase operations, selective

erasing can mimic RESET operations to reset the cells in the

program unit (word) in advance. Since RESET is a process

to toggle the target cells from the programmed status to the

pristine state, our approach prepares word-aligned data filled

by all zeros and program the data to the designated address.

Specifically, while the server loads the target kernel, the

PRAM subsystem can selectively program the all-zero data

word for only the addresses that will be overwritten soon

(but before completing the corresponding computation). We

implemented this selective erasing technique and tested it

on the PRAM module. Our evaluation results reveal that

selective erasing can reduce the overwrite latency by 55%,

on average. We also observe and there is no bit error per

access during selective erasing and after the erase operation.

Performance improvement. Figure 13 compares a noop

scheduler [51] on multi-partition PRAM, denoted by

Bare-metal, with the ones that employ aforemen-

tioned two optimization techniques, each being referred to

as Interleaving and selective-erasing, respec-

tively. In addition, the evaluation results include performance

of our subsystem scheduler that puts both optimization

techniques together, called Final, under the execution of

Polybench [18]. The figure also shows the write ratios

(pointed by circle) that we tested for each application.

One can observe from this figure that Interleaving
improves data processing bandwidth with Bare-metal
by as high as 54% (e.g., trmm). However, there are

several workloads (e.g., adi, floyd and jaco1D) that

have almost zero benefit, compared to Bare-metal, due

to the long latency overhead of overwrites. In this case,

selective-erasing exhibits better bandwidth than

Bare-metal by 57%, on average. By putting all them to-

gether, Final enhances bandwidth of Bare-metal across

all tested applications, by 77% on average, and therefore, we

apply this to our DRAM-less as default.

B. Logic Implementation

Our FPGA-based PRAM controller supports simple read

and write interfaces, which can be used by the server’s MCU.

They also provide read and write data interfaces, which

are mapped to two 256-bit datapath registers. Figure 14

illustrates the block diagram of our PRAM controller, which

consists of translator, memory controller, and datapath in

detail. All these components can communicate with PRAM

chips through 400MHz PRAM physical layer (PHY).

Translator and datapath. The translator of our PRAM

controller simply exposes a 32-bit address and a 32-bit mode

registers, which can be linked to the server’s MCU. Since

PRAM module does not allow to directly write data to

its storage cores through LPDDR2-NVM, our controller’s

translator handles the overlay window of target PRAM

module on behalf of MCU. The PRAM controller first stores

a write operation code to the code register, which is mapped

to 0x80 of the overlay window base address (OWBA, cf.

Figure 4) to inform the memory operation type to the target

PRAM bank. The translator then records target row address

at the address register mapped to OWBA+0x8B and informs

294

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 08,2020 at 02:44:53 UTC from IEEE Xplore. Restrictions apply.

Hetero Heterodirect Hetero-PRAM Heterodirect-PRAM NOR-intf Integrated-SLC Integrated-MLC Integrated-TLC PAGE-buffer DRAM-less
Heterogeneous 	 	 	 	

Internal DRAM 	 	 	 	
 	 	 	 	

NVM read (us) 50 50 0.1 0.1 290 25 50 80 0.1 0.1

NVM write (us) 800 800 10/18 10/18 120 300 800 1250 10/18 10/18

NVM erase (us) 3500 3500 N/A N/A N/A 2000 3500 2274 N/A N/A

Table I: Important configuration parameters for all accelerated systems that we evaluated.
Parameter Values Parameter Values Parameter Values

RL (cycle) 6 tRP (cycle) 3 tDQSS (ns) 0.75-1.25

WL (cycle) 3 tRCD (ns) 80 tWRA (ns) 15

tCK (ns) 2.5 tDQSCK (ns) 2.5-5.5
tBURST(cycle):

BL4/BL8/BL16
4/8/16

RAB 4 RDB 32B,4RDBs PRAM write (us) 10-18

Channels 2 Packages 16 Partitions 16

Table II: Charaterized PRAM parameters.

the data burst size to the designated PRAM module in terms

of bytes through the multi-purpose register, which is mapped

to OWBA+0x93. After setting these registers on the overlay

window, the translator starts writing data into the program

buffer (OWBA+0x800) and then executes the write operation

by configuring the execute register (mapped to OWBA +

0xC0). On the other hand, for a read, the translator directly

forwards it to a command generator of the memory control

logic. Since the operand size of load and store instructions

that our PEs use is 32 bytes, we implement 256-bit registers

for each load and store operation in the datapath.

Memory control logic. The hardware-automated control

logic in our controller consists of two parts; one is a

command generator and another one is an initializer (cf.

Figure 14). The initializer handles all PRAMs’ boot-up

process by enabling auto initialization, calibrating on-die

impedance tasks and setting up the burst length and overlay

window address. On the other hand, the command genera-

tor handles three-phase addressing (pre-active, activate and

read/write) and LPDDR2 transactions over our PRAM PHY.

It disassembles the target address into an upper row address,

a lower row address, a row buffer address, and a column

address. These decomposed addresses are then delivered to

PRAM through 20-bit DDR signal packets. A signal packet

composes the operation type (2∼4 bits), row buffer address

(2 bits), target address (7∼15 bits) of either overlay window

or target PRAM partition. At a pre-active phase, it selects the

target row buffer by delivering 2-bit BA signal and stores the

upper row address to the selected RAB. In the next phase,

the command generator signals the lower row address and

the buffer address to the target PRAM module. This will

activate the target row and program the data to target row

by delivering the data, which is stored by the program buffer

address. If it is a read, the internal sensing circuit of target

PRAM transfers data from the corresponding row to the

RDB associated with the selected RAB.

VI. EXPERIMENTAL EVALUATIONS

To evaluate diverse accelerated systems, we implement

following three groups of data processing solutions. The key

comparisons among all configurations are listed in Table I.

1) Heterogeneous systems: We prepare four traditional het-

erogeneous computing systems (cf. Figure 5a) by using

different accelerator/storage combinations. “Hetero” and

“Hetero-PRAM” are the accelerators that employ flash-

based and PRAM-based SSDs (i.e., Intel Optane [23]) as

their external storage, respectively. On the other hand,

“Heterodirect” and “Heterodirect-PRAM” are

the accelerators, which are same with aforementioned two,

but use a zero-overhead peer-to-peer DMA [13], [14], [52]

to communicate with the external SSDs.

2) Aggressive integrations: We implement three advanced

accelerators, which are a more aggressive solution

than the previous software-assisted approaches.

“Integrated-SLC”, “Integrated-MLC” and

“Integrated-TLC” put single-level-cell (SLC) [20],

multi-level-cell (MLC) [21], and triple-level-cell (TLC)

[22] flash based SSDs into the hardware accelerator,

respectively. These solutions are similar to active SSD

approaches [53], [54], [55], [12], [56].

3) PRAM-based accelerators: We tightly integrate PRAMs

into multi-core coprocessors with four different NVM

interfaces and memory technologies. “NOR-intf” uses

9x nm parallel PRAM [43] that employs a serial periph-

eral NOR flash interface. Like our PRAM, it allows a

host to access the memory at byte-granule. In contrast,

“PAGE-buffer” leverages the 3x nm memory sample

that we used for DRAM-less, but performs all I/Os via

a page-based interface with an assistance of its internal

DRAM. “DRAM-less” directly accesses PRAM-based

subsystems over multi-resource aware interleaving and

selective erase techniques. Compared to DRAM-less,

“DRAM-less (firmware)” that we implemented re-

places the hardware automated memory control logic with

traditional SSD firmware, used in block storage devices

(e.g., NVMe SSD and Optane SSD). The SSD firmware is

implemented on a 3-core 500MHz embedded ARM CPU,

similar to the controllers of commercial SSDs [57].

Note that all the hardware accelerators are implemented

on commercially available platform that employs eight 1GHz

embedded processors, each having eight functional units,

64KB L1 and 512KB L2 cache [19]. All SSDs used for this

evaluation are emulated on a real system, and the size of their

internal DRAM buffer is 1GB. This buffer configuration

is also applied to integrated accelerator approaches whose

memory should be accessed with a page granule.

The important device properties and timing parameters of

our PRAM modules are listed in Table II. Overall, the read

295

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 08,2020 at 02:44:53 UTC from IEEE Xplore. Restrictions apply.

Workload Abbr. adi chol doitg durbin dynpro fdtdap floyd gemver jaco1D jaco2D lu ludcmp regd seidel trisolv trmm
Total instruction (Billion) 2.6 1.1 2.2 0.25 0.29 1.5 3.0 0.51 0.29 0.34 3.0 2.7 0.17 2.81 0.14 3.0

Output size / Input size 0.33 1 1 0.0078 0.0078 0.33 1 0.016 0.5 0.5 1 0.016 0.33 1 0.016 0.5

Data volume (MB) 768 910 896 903 903 768 896 845 960 960 896 975 768 896 975 960

Table III: Workload characteristics.

Figure 15: DRAM-less bandwidth improvement.

adi chol doitg durbin dynpro fdtdap floyd gemver
jaco1D jaco2D lu ludcmp regd seidel trisolv trmm

0

3

6

B
re

a
k
d

o
w

n N: NOR-intf S: Integrated-SLC M: Integrated-MLC

A
GTMSNPR

D

 Computation Host overhead

 Storage Transfer
9.7 11.9

8.9

E
x
e

c
u

ti
o

n
 T

im
e

 T: Integrated-TLC G: PAGE-buffer A: DRAM-less

D: Heterodirect P: Hetero-PRAM R: Heterodirect-PRAM

Figure 16: Execution time decomposition.

adi chol doitg durbin dynpro fdtdap floyd gemver
jaco1D jaco2D lu ludcmp regd seidel trisolv trmm0

1

2

3

5
6.3N: NOR-intf S: Integrated-SLC M: Integrated-MLC

AGTMSNRP
D

T: Integrated-TLC G: PAGE-buffer A: DRAM-less

D: Heterodirect P: Hetero-PRAM R: Heterodirect-PRAM

E
n

e
rg

y
 B

re
a

k
d

o
w

n

Flash/PRAM embedded DRAM

PE cores Host

Figure 17: Energy decomposition.
latency is around 100 ns, including three-phase addressing

(i.e., RL, tRCD, tRP and tBURST). In contrast, the write

latency is approximately 10 us (overwrites require extra 8

us), which includes all program buffer writing delays (i.e.,

WL, tRCD, tRP and tBURST) and PRAM cell program

delays. While we observed that the write latency can be half,

this latency is used for only special cases, such as factory

programs, which need an extra power source from outside

and limit the number of write processes. Thus, we choose

ordinary timing parameters, as 10 ∼ 18 us, and do not

consider the shorter latency. Note that, even though 9x nm

PRAM [43] offers a byte addressable interface, its read/write

latencies are 290 us/120 us.

We port Polybench suite [18] to the evaluated platform

with several optimizations. Specifically, each workload is

split into multiple compute kernels, which can be simulta-

neously executed across all different PEs of accelerators. We

modify the benchmark to fully utilize the computing power

of each PE by embedding DSP intrinsic (e.g., multi-way

floating-point multiply/add and 16-bit integer-intrinsic) into

the benchmark. The important characteristics of workloads

that we tested are listed in Table III. The intensiveness of

writes is classified by the amount of output size per input

size. For example, doitg is a write-intensive application even

though there are more read requests generated by last level

cache at runtime (cf. Figure 13). We also show the data vol-

ume of each application. The data volume has been increased

by more than 10 times, compared to the original configura-

tion in the benchmark. Before the evaluation, we initialize

the data and place it in the persistent storages (e.g., SSD

for heterogeneous systems and PRAM/Embedded-Flash for

integrated approaches), which is a common practice in prior

research [13], [12].

A. Bandwidth Improvement
Figure 15 shows throughput of data processing for the 10

hardware accelerations we evaluated, which are normalized

to those of our baseline, Hetero. This figure shows that

Heterodirect exhibits, on average, 25% better perfor-

mance than the baseline. The reason for this improvement

in performance is because Heterodirect reduces the

number of data copies within the host by directly forwarding

target data from the underlying SSD to the accelerator.

For read-intensive workloads (e.g., durbin, dynpro, gemver
and trisolv), Hetero-PRAM and Heterodirect-PRAM
improve the performance of Hetero and Heterodirect
by 15% and 24%, on average, respectively, due to PRAM’s

shorter latency. However, all these benefits are unfortu-

nately limited if applications generate a large size of output

data (e.g., chol, doitg, etc.) and/or require many data to

process (e.g., jaco1D, jaco2D and regd). This is because

flash is well optimized for block interface operations (and

exhibit better performance on bulk writes), whereas PRAM

is designed towards supporting byte-granular accesses. In-

terestingly, the performance of NOR-intf is worse than

296

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 08,2020 at 02:44:53 UTC from IEEE Xplore. Restrictions apply.

Integrated-SLC by 27%, on average, except for a few

read-intensive workloads (durbin, dynpro, etc). This is be-

cause, even though NOR-intf supports byte-addressability,

all PRAM write accesses are serialized by 16-bit low-level

memory operations, and its bandwidth for reads and writes

is 2x and 101x worse than flash’s page-level bandwidth

(i.e., 16KB parallel I/O). While PAGE-buffer offers the

performance, 78% better than Integrated-SLC, it is

even worse than NOR-intf by around 19% for the read-

intensive workloads. This performance degradation is caused

by the disability of byte granular accesses. In contrast, all the

PE employed by DRAM-less (firmware) can access

the targets with byte-granularity, which in turn eliminates

the memory operations involved in data transfer across dif-

ferent devices. However, the traditional firmware constrains

the average performance improvement of DRAM-less
(firmware) to 31%, compared to PAGE-buffer. This

is because memory requests, generated by the multiple PEs

in the accelerator, have to be serially processed by the tradi-

tional firmware, which suffers from long delay. By replacing

the traditional firmware with our hardware automated control

logic, DRAMless can significantly reduce the firmware in-

tervention latency. Therefore, DRAM-less further improves

the overall performance by 25%, compared to DRAM-less
(firmware). The DRAM-less performance is better than

that of Hetero and Heterodirect by 93% and 47%,

respectively. Even compared to Heterodirect-PRAM
and PAGE-buffer with their best execution scenario, our

DRAM-less exhibits around 64% better average bandwidth.

We observed that the benefits brought by DRAM-less
increase for the memory-intensive workloads. For example,

DRAM-less performance is on average 149% better than

PAGE-buffer for durbin, dynpro, jacob1D, and regd.

B. Execution Time Analysis

Figure 16 decomposes the execution time of all the

accelerators that we tested. Specifically, Heterodirect
can shorten the execution time as high as 16%, compared

to Hetero, since it addresses the data transfer overheads

imposed by host-side context switching and redundant data

copies. Note that this phenomenon is also observed in

Hetero-PRAM and Heterodirect-PRAM, but its long

delay imposed by block-sized writes makes them worse

than heterogeneous systems that employ the flash-based SSD

by 5%, on average. Integrated-SLC/MLC/TLC remove

the overhead imposed by data transfer via PCIe; however,

these accelerators consume more cycles on flash accesses

than computation by 78%, on average. This is because the

internal access patterns of Integrated-SLC/MLC/TLC
are not optimized by a buffer cache or file system, and

still need to access the flash in a page granularity. Even

though NOR-intf allows PEs to access memory with a

byte granularity, its 16-bit serialized I/O operations and

poor memory bandwidth in turn make the time cost of

data processing longer than Integrated-SLC by 10%,

on average. In contrast, the average execution time, con-

sumed by PAGE-buffer, is 35% shorter than that of

Integrated-SLC. This is because, a single page ac-

cess cannot reap the benefit of flash-level from its in-

ternal parallelism, while multiple PRAM chips serve sin-

gle page access together, which can enhance the perfor-

mance. DRAM-less offers shorter storage latency than

Integrated-SLC by 51%, on average. This is because

DRAM-less fetches data with finer granularity and directly

brings the data to each agent’s cache through three-phase ad-

dressing. Even for write-intensive workloads (chol, doitg, lu
and seidel) than others, DRAM-less reduces the overheads

imposed by data movements by around 42%, compared to

Integrated-SLC.

C. Energy Efficiency Study

Figure 17 shows the energy decomposition for all the

data processing activities of our 10 hardware accelerators.

Although the performance improvement of DRAM-less
is not significant (cf. Figure 15) for computation-intensive

workloads (adi, fdtdap, floyd, lu, etc.), it saves great energy

in processing the same amount of data than other accelera-

tors. Hetero and Hetero-PRAM spend most of its energy

on moving data within the host-side storage stack, whereas

DRAM-less removes them, and can perform data process-

ing near PRAMs with around 76% less energy, as even

compared to PAGE-buffer. Note that, for write-intensive

workloads, Hetero-PRAM and Heterodirect-PRAM
waste energy on storing the outputs to PRAM SSDs by seri-

alizing all page-basis requests into byte-granular operations.

PAGE-buffer and Integrated-SLC/MLC/TLC dis-

sipate energy on internal DRAM buffer for read-intensive

workloads. Unlike other workloads whose data request sizes

(input/output) are mostly greater than multiple pages, read-

intensive workloads store a few bytes at the end of each

kernel iteration, which wastes a lot of memory spaces within

a page, which introduces DRAM pollution. In contrast, since

all of the DRAM-less’s agents can process data residing on

the storage over normal store/load instructions, instead of

using a file system or an OS API, it not only can eliminate

the host energy overheads but also efficiently access data

within the accelerator. In addition, with byte-addressability,

DRAM-less can fetch data that is smaller than data that

flash can fetch. Note that the long latency of NOR-intf’s

parallel PRAM makes its energy efficiency even worse than

others (except for read-intensive workloads).

D. Time Series Analysis

Total IPC. Figures 18 and 19 show the time se-

ries analysis of total IPC, which is aggregated by all

agent PEs, under execution of a read-intensive workload

(gemver) and a write-intensive workload (doitg), respec-

tively. One can observe from the read-intensive evalua-

297

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 08,2020 at 02:44:53 UTC from IEEE Xplore. Restrictions apply.

(a) Page-based accesses.

0 50 100 150
0

2

4

6

8

IP
C

Time (us)

 DRAM-less NOR-interf

(b) Byte-based acceses.

Figure 18: IPC for gemver (read-intensive).

(a) (b)

0 500 1000
0
4
8

12
16

Time (us)

 DRAM-less

 NOR-interf

(c)

Figure 19: IPC for doitg (write-intensive).

tion, Integrated-SLC/MLC/TLC and PAGE-buffer
require fetching a whole page from storage to DRAM, which

makes all corresponding PEs idle (zero value in Figure

18). In contrast, since DRAM-less and NOR-interf
directly load and store data to/from storage, they allow

PEs to keep processing data without introducing such idle.

Thus, IPC of DRAM-less and NOR-interf is even better

than PAGE-buffer by 292% and 206%, respectively, and

sustainably offers 2 IPC during the executions. The shorter

latency brought by multi-resource aware interleaving and

new PRAM technology improves IPC and exhibit better

performance than NOR-interf by 42%. This phenomenon

becomes more significant under the write-intensive work-

load (Figure 19). For Integrated-SLC/ MLC/ TLC,

the enforced idle period (i.e., stall) due to storage accesses

is longer than the idles observed by gemver by 14.6x

on average. While NOR-interf has no such stall, the

total IPC of agents doitg severely degrades compared to

DRAM-less (78% worse than that of DRAM-less). This

is because, even though NOR-interf has no data pollution

observed by the page-granule access based accelerators, its

legacy read and write are slower than our new PRAM by

3x and 10x, respectively. The total IPC of DRAM-less
is better than that of integrated-SLC/MLC/TLC and

PAGE-buff by 5.1x, 10.3x, 15x, and 1.9x, respectively.

Power consumption and energy cost. To dig deeper

power and total energy costs, we capture first 16KB data

processing, and their results are illustrated by Figures 20

and 21 for the read-intensive and write-intensive workloads,

50 100 150 200600

800

1000

1200

1400

Idle power complete
Integrated-SLC

complete
PAGE-buffer

complete
NOR-interf

complete

O
v
e

ra
ll

c
o

re
 p

o
w

e
r

(m
W

)

Time (us)

DRAM-less

PAGE-buffer

NOR-interf
DRAM-less

Integrated-SLC

(a) PE power consumption.

DRAM-le
ss

NOR-in
terf

Integra
ted-S

LC

PAGE-b
uffe

r0
100
200
300
400
500
600

E
n

e
rg

y
 c

o
s
t
(u

J
)

(b) PE energy.

Figure 20: Overall core power and total energy evalu-
ation example in gemver (read-intensive).

100 200 300 400 500600

900

1200

1500

1800

complete
Integrated-SLC

complete
NOR-interf

complete
PAGE-buffer

complete

O
v
e

ra
ll

c
o

re
 p

o
w

e
r

(m
W

)

Time (us)

DRAM-less

PAGE-buffer
NOR-interfDRAM-less

Integrated-SLC

(a) PE power consumption.

DRAM-le
ss

NOR-in
terf

Integra
ted-S

LC

PAGE-b
uffe

r0
100
200
300
400
500
600

E
n

e
rg

y
 c

o
s
t
(u

J
)

(b) PE energy.

Figure 21: Overall core power and total energy evalu-
ation example of doitg (write-intensive).

respectively. One can see from Figure 20, NOR-interf
consumes, on average, 14% lower agent PE power com-

pared to other approaches. This can explain the reason

why data processing bandwidth of NOR-interf is often

worse than other accelerators. Unlike PAGE-buff and/or

Integrated-SLC/MLC/TLC, NOR-interf access the

underlying storage over byte granularity without any help

of DRAM. Thus, .D (load/store) unit is stalled and makes

the most of functional units (.L, .S, and .M) idle. This

low utilization issues enable NOR-interf to process data

with low power (even lower than that of DRAM-less),

but as increasing latency, it consumes energy higher than

DRAM-less by 32% on average (Figure 20b). Note that,

even though Integrated-SLC and PAGE-buffer ex-

hibit the actual time and overall core power for data process-

ing similar to those of DRAM-less, their actual completion

time is delayed and suffers from the long latency of data

transfers, which increases their energy costs by 7 times and

1.9 times compared to those of DRAM-less. Aforemen-

tioned characteristics become more significant and severe

under the write-intensive workload. As shown in Figure

21a, NOR-interf takes 4x longer execution time than

PAGE-buffer to complete a same task, and DRAM-less
outperforms all other options with 50% ∼ 88% shorter

completion time, on average.

VII. RELATED WORK AND DISCUSSION

Data movement optimizations. Several prior studies have

been proposed to minimize the overheads, imposed by data

transfers; multiple solutions [58], [13], [14] apply a peer-

to-peer DMA to directly forward I/O requests between an

accelerator and SSD at a system level. Even though these

approaches are powerful to reduce unnecessary software

interventions and data copies within host-side DRAMs, they

still require moving data around multiple physical bound-

aries. They also need extra efforts for modifying host drivers

and file systems. [59] proposed a FPGA-based DMA engine

to enable an inter-device communication without a help from

host-side software stack. While such approach eliminates

the software intervention at some extent, it unfortunately

costs PCIe transfer delays and introduces the communication

overheads between the DMA engine and PCIe endpoint

298

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 08,2020 at 02:44:53 UTC from IEEE Xplore. Restrictions apply.

devices. In contrast, DRAM-less tightly integrates our

new byte-addressable PRAMs into a multi-core accelerator,

which allows data processing tasks to load/store data without

a host-side OS help or any source-level modifications.

Near-data processing. Active SSDs aim to reduce data

movement overheads by leveraging the existing SSD con-

troller(s) [54], [53], [55], [12]. However, active SSDs face

several challenges regarding the computation flexibility and

capabilities. For instance, their user scenarios and applica-

tions are strongly limited by APIs that flash firmware needs

to offer, which are fixed at a design time. [53] provides

more flexible interfaces using C++11, but unfortunately,

application offloading is available for only a “single” core

and has no computing parallelism near storage. All these

approaches are also strictly linked with their firmware and

require a large size of internal DRAM buffers. In con-

trast, our DRAM-less automates all PRAM services over

hardware and employs multiple low-power PEs, which can

flexibly execute general-purpose applications with a massive

parallel computing power.

PRAM integration in computing system. [60] checked the

feasibility of replacing a main memory with PRAMs and

revealed that multiple row buffers can reduce PRAM latency

and energy, compared to a single row buffer mechanism,

by around 45% and 69%, respectively. [61], [62], [63]

proposed to reduce PRAM’s write penalties by combining

DRAM and PRAM as a hybrid memory; the hybrid memory

leverages the fast DRAM banks to serve the hot data in

front of PRAM banks. All these studies adopted an “ideal”

PRAM latency model, assuming that PRAM exhibits a

read/write latency, which is the same with or similar to

DRAM latency. Unfortunately, such assumption is far away

from the characteristics of real PRAMs, whose read and

write latencies are 100ns and 10us, respectively. Considering

the practical performance of PRAMs, we believe it is yet

difficult and unable to directly replace the host-side DRAMs

with PRAMs. Instead, DRAM-less integrates PRAMs in an

accelerator to remove costly data movement overheads and

design an efficient near data processing model.

Real PRAM prototype. Recently, industry has announced

a real persistent memory prototype, called as Optane DC

persistent memory (PMM) [64]. While such PRAM proto-

type can be seamlessly integrated in host-side environment,

it may not fit for the accelerator. Specifically, Optane DC

PMM needs the support of filesystem and drivers to guar-

antee data persistency, which unfortunately is unavailable in

accelerator. In addition, many accelerators adopt customized

communication interfaces [19], which are incompatible with

that of Optane DC PMM. Note that the internal architecture

details of Optane DC PMM are still not open to the public. In

contrast, we revealed the design details of the real PRAM

modules and the corresponding memory controller in this

work. We also discussed on the challenges and solutions of

integrating PRAM subsystem in the hardware accelerator.

PRAM optimization. Multiple approaches were proposed to

improve the performance of PRAM [65], [66]. Specifically,

[65] improves the PRAM write performance and extends

its endurance by compressing the target data. To prevent

the long PRAM writes from blocking the following read

operations, [66] proposed to cancel or pause the write oper-

ations being in progress. Unfortunately, none of these work

considered the architectural characteristics of real PRAMs.

While [67] can leverage the multi-partition of the modern

PRAMs to parallelize incoming memory requests, such

approach is sub-optimal, as read-only streams cannot benefit

from the low-level memory parallelism. In contrast, our

memory controller modified the timing diagram of the three-

phase addressing to interleave incoming memory requests by

being aware of PRAM’s multiple partitions and row buffers.

It can fully overlap the data transfer time with the latency to

access the memory partition, which can improve low-level

memory parallelism. Our controller also reduces the PRAM

write latency by selectively erasing the stale data in advance.

PRAM lifetime. DRAM-less addresses PRAM write en-

durance issue in two aspects. Specifically, the layout of

PRAM cells are carefully organized in our PRAM sample

to eliminate SET and RESET disturbances, thereby signif-

icantly improving endurance. In addition, DRAM-less can

integrate traditional wear levellers in our PRAM controller,

such as start-gap [68], to improve the PRAM lifetime.

VIII. CONCLUSION

The existing accelerated systems waste many CPU cycles

and powers in transferring data across different logic barriers

and physical boundaries. To address this, we proposed

DRAM-less that integrates new multi-partition PRAMs

into a multi-core based accelerator. DRAM-less enables

multiple processing elements to directly access the data from

its internal PRAM and automates the corresponding I/O

path over hardware. DRAM-less in turn can remove the

overheads imposed by the host-side interventions and costly

data movement. We also proposed a new PRAM controller

that addresses PRAM’s write penalties and exhibits a high

degree of PRAM internal parallelism by being aware of

PRAM micro-architecture (multi-partition). Our evaluation

results reveal that DRAM-less, on average, achieves 47%

and 80% higher performance than advanced accelerated

systems and active storage approaches, respectively.

IX. ACKNOWLEDGEMENT

The authors thank Dr. Hung-Wei Tseng for shepherding

their paper. This paper is a full-length version of an earlier

4-page letter [69]. This research is mainly supported by

NRF 2016R1C182015312, MemRay grant (G01190170),

DOE DEAC02-05CH11231, NRF 2015M3C4A7065645,

and KAIST start-up package (G01190015). J. Zhang and

G. Park equally contribute to this work. Myoungsoo Jung is

the corresponding author.

299

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 08,2020 at 02:44:53 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] R. M. Wallace, B. Vacaliuc, D. A. Clayton, B. R.
Chaffins, O. O. Storaasli, D. Strenski, and D. Poz-
nanovic, “Consideration of the tms320c6678 multi-core dsp
for power efficient high performance computing,” tech.
rep., Technical Report ORNL-Pub-28647, Oak Ridge Na-
tional Laboratory, Feb 2011. Original URL was http://info.
ornl. gov/sites/publications/Files/Pub28647. pdf. https://www.
dropbox.com/s/56t9z9lav5ir45f/ORNL-Pub28647.pdf.

[2] G. Hegde, N. Ramasamy, N. Kapre, et al., “Caffepresso: an
optimized library for deep learning on embedded accelerator-
based platforms,” in Proceedings of the International Confer-
ence on Compilers, Architectures and Synthesis for Embedded
Systems, p. 14, ACM, 2016.

[3] J. Murphy, “Deep Learning Benchmarks of NVIDIA
Tesla P100 PCIe, Tesla K80, Tesla M40 GPUs
https://www.microway.com/hpc-tech-tips/deep-learning-
benchmarks-nvidia-tesla-p100-16gb-pcie-tesla-k80-tesla-
m40-gpus,” 2017.

[4] R. Solcà, A. Kozhevnikov, A. Haidar, S. Tomov, J. Dongarra,
and T. C. Schulthess, “Efficient implementation of quantum
materials simulations on distributed cpu-gpu systems,” in
Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, p. 10,
ACM, 2015.

[5] Y. Wang, M. J. Anderson, J. D. Cohen, A. Heinecke, K. Li,
N. Satish, N. Sundaram, N. B. Turk-Browne, and T. L. Willke,
“Full correlation matrix analysis of fmri data on intel R©
xeon phi coprocessors,” in Proceedings of the International
Conference for High Performance Computing, Networking,
Storage and Analysis, p. 23, ACM, 2015.

[6] I. Yamazaki, J. Kurzak, P. Luszczek, and J. Dongarra, “Ran-
domized algorithms to update partial singular value decom-
position on a hybrid cpu/gpu cluster,” in Proceedings of the
International Conference for High Performance Computing,
Networking, Storage and Analysis, p. 59, ACM, 2015.

[7] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat,
J. Fowers, M. Haselman, S. Heil, M. Humphrey, P. Kaur,
J.-Y. Kim, et al., “A cloud-scale acceleration architecture,” in
Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM
International Symposium on, pp. 1–13, IEEE, 2016.

[8] V. Gokhale, J. Jin, A. Dundar, B. Martini, and E. Culurciello,
“A 240 g-ops/s mobile coprocessor for deep neural networks,”
in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pp. 682–687, 2014.

[9] P. Russom et al., “Big data analytics,” TDWI best practices
report, fourth quarter, vol. 19, no. 4, pp. 1–34, 2011.

[10] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing:
state-of-the-art and research challenges,” Journal of internet
services and applications, vol. 1, no. 1, pp. 7–18, 2010.

[11] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, C. Sori-
ente, and P. Valduriez, “Streamcloud: An elastic and scalable
data streaming system,” IEEE Transactions on Parallel and
Distributed Systems, vol. 23, no. 12, pp. 2351–2365, 2012.

[12] S. Seshadri, M. Gahagan, M. S. Bhaskaran, T. Bunker,
A. De, Y. Jin, Y. Liu, and S. Swanson, “Willow: A user-
programmable ssd.,” in OSDI, pp. 67–80, 2014.

[13] H.-W. Tseng, Q. Zhao, Y. Zhou, M. Gahagan, and S. Swan-
son, “Morpheus: creating application objects efficiently for
heterogeneous computing,” in Computer Architecture (ISCA),
2016 ACM/IEEE 43rd Annual International Symposium on,
pp. 53–65, IEEE, 2016.

[14] J. Zhang, D. Donofrio, J. Shalf, M. T. Kandemir, and M. Jung,
“Nvmmu: A non-volatile memory management unit for het-
erogeneous gpu-ssd architectures,” in Parallel Architecture
and Compilation (PACT), 2015 International Conference on,
pp. 13–24, IEEE, 2015.

[15] T. Anderson, D. Bui, S. Moharil, S. Narnur, M. Rahman,
A. Lell, E. Biscondi, A. Shrivastava, P. Dent, M. Yan, et al.,
“A 1.5 ghz vliw dsp cpu with integrated floating point
and fixed point instructions in 40 nm cmos,” in Computer
Arithmetic (ARITH), 2011 20th IEEE Symposium on, pp. 82–
86, IEEE, 2011.

[16] Intel, “Intel ssd 750 series,” http://www.intel.com/content/
www/us/en/solid-state-drives/solid-state-drives-750-
series.html, 2015.

[17] J. Zhang and M. Jung, “Flashabacus: a self-governing flash-
based accelerator for low-power systems,” in Proceedings of
the Thirteenth EuroSys Conference, p. 15, ACM, 2018.

[18] L.-N. Pouchet, “Polybench: the polyhedral benchmark suite,”
http://www.cs.ucla.edu/∼{}pouchet/ software/polybench/ ,
2012.

[19] Texas-Instruments, “Tms320c6678 multicore fixed and
floating-point digital signal processor,” 2014.

[20] Micron, “Mt29f2g08aabwp/mt29f2g16aabwp nand flash
datasheet,” 2004.

[21] Micron, “Mt29f64g08cfabb/mt29f64g08cecbb nand flash
datasheet,” 2008.

[22] Micron, “Mt29f64g08cbaaa/mt29f64g08cbaab nand flash
datasheet,” 2009.

[23] B. Tallis, “The intel optane ssd dc p4800x (375gb) review:
Testing 3d xpoint performance,” 2017.

[24] JESD209-2B, “Jedec standard: Low power double data rate
2 (lpddr2),” in JEDEC SSTA, 2010.

[25] Xilinx, “Xilinx zynq-7000 all programmable soc
zc706 evaluation kit.” https://www.xilinx.com/support/
documentation/boards and kits/zc706/ug954-zc706-eval-
board-xc7z045-ap-soc.pdf, 2018.

[26] B. Barker, “Message passing interface (mpi),” in Workshop:
High Performance Computing on Stampede, vol. 262, 2015.

[27] S. Lai, “Current status of the phase change memory and
its future,” in Electron Devices Meeting, 2003. IEDM’03
Technical Digest. IEEE International, pp. 10–1, IEEE, 2003.

300

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 08,2020 at 02:44:53 UTC from IEEE Xplore. Restrictions apply.

[28] V. Young, P. J. Nair, and M. K. Qureshi, “Deuce: Write-
efficient encryption for non-volatile memories,” in ACM
SIGARCH Computer Architecture News, vol. 43, pp. 33–44,
ACM, 2015.

[29] M. K. Qureshi, M. M. Franceschini, A. Jagmohan, and
L. A. Lastras, “Preset: improving performance of phase
change memories by exploiting asymmetry in write times,”
ACM SIGARCH Computer Architecture News, vol. 40, no. 3,
pp. 380–391, 2012.

[30] H.-S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg,
B. Rajendran, M. Asheghi, and K. E. Goodson, “Phase change
memory,” Proceedings of the IEEE, vol. 98, no. 12, pp. 2201–
2227, 2010.

[31] H. Horii, J. Yi, J. Park, Y. Ha, I. Baek, S. Park, Y. Hwang,
S. Lee, Y. Kim, K. Lee, et al., “A novel cell technology using
n-doped gesbte films for phase change ram,” in VLSI Tech-
nology, 2003. Digest of Technical Papers. 2003 Symposium
on, pp. 177–178, IEEE, 2003.

[32] S. Hudgens and B. Johnson, “Overview of phase-change
chalcogenide nonvolatile memory technology,” MRS bulletin,
vol. 29, no. 11, pp. 829–832, 2004.

[33] X. Dong and Y. Xie, “Adams: Adaptive mlc/slc phase-
change memory design for file storage,” in Design Automation
Conference (ASP-DAC), 2011 16th Asia and South Pacific,
pp. 31–36, IEEE, 2011.

[34] Y. Joo, D. Niu, X. Dong, G. Sun, N. Chang, and Y. Xie,
“Energy-and endurance-aware design of phase change mem-
ory caches,” in Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE), 2010, pp. 136–141, IEEE, 2010.

[35] P. J. Nair, C. Chou, B. Rajendran, and M. K. Qureshi,
“Reducing read latency of phase change memory via early
read and turbo read,” in High Performance Computer Archi-
tecture (HPCA), 2015 IEEE 21st International Symposium on,
pp. 309–319, IEEE, 2015.

[36] J. Wang, X. Dong, G. Sun, D. Niu, and Y. Xie, “Energy-
efficient multi-level cell phase-change memory system with
data encoding,” in Computer Design (ICCD), 2011 IEEE 29th
International Conference on, pp. 175–182, IEEE, 2011.

[37] S. Liu, A. Kolli, J. Ren, and S. Khan, “Crash consistency in
encrypted non-volatile main memory systems,” in 2018 IEEE
International Symposium on High Performance Computer
Architecture (HPCA), pp. 310–323, IEEE, 2018.

[38] Y. Cassuto, S. Kvatinsky, and E. Yaakobi, “Sneak-path con-
straints in memristor crossbar arrays,” in Information Theory
Proceedings (ISIT), 2013 IEEE International Symposium on,
pp. 156–160, IEEE, 2013.

[39] C. Xu, D. Niu, N. Muralimanohar, R. Balasubramonian,
T. Zhang, S. Yu, and Y. Xie, “Overcoming the challenges
of crossbar resistive memory architectures,” in High Per-
formance Computer Architecture (HPCA), 2015 IEEE 21st
International Symposium on, pp. 476–488, IEEE, 2015.

[40] D. Niu, C. Xu, N. Muralimanohar, N. P. Jouppi, and Y. Xie,
“Design trade-offs for high density cross-point resistive mem-
ory,” in Proceedings of the 2012 ACM/IEEE international
symposium on Low power electronics and design, pp. 209–
214, ACM, 2012.

[41] S. Kang et al., “A 0.1 um 1.8-v 256-mb phase-change random
access memory (pram) with 66-mhz synchronous burst-read
operation,” IEEE Journal of Solid-State Circuits, 2007.

[42] Y.-C. Bae, J.-Y. Park, S. J. Rhee, S. B. Ko, Y. Jeong, K.-S.
Noh, Y. Son, J. Youn, Y. Chu, H. Cho, et al., “A 1.2 v 30nm
1.6 gb/s/pin 4gb lpddr3 sdram with input skew calibration and
enhanced control scheme,” in Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), 2012 IEEE International,
pp. 44–46, IEEE, 2012.

[43] Numonyx, “Omneo, p8p pcm, 128-mbit parallel phase change
memory datasheet,” 2010.

[44] T. Instruments, “Tms320c66x dsp corepac user guide,” 2011.

[45] N. Otterness, M. Yang, S. Rust, E. Park, J. H. Anderson, F. D.
Smith, A. Berg, and S. Wang, “An evaluation of the nvidia tx1
for supporting real-time computer-vision workloads,” in Real-
Time and Embedded Technology and Applications Symposium
(RTAS), 2017 IEEE, pp. 353–364, IEEE, 2017.

[46] Parallella, “Epiphany-iii 16-core microprocessor.” http://
www.adapteva.com/epiphanyiii/, 2013.

[47] TI, “Ti code generation tools,” http://processors.wiki.ti.com/
index.php/Category:Compiler, 2014.

[48] TI, “Multicore software development kit,” https:
// training.ti.com/multicore-software-development-kit-mcsdk-
keystone-devices, 2011.

[49] TI, “Multicore application deployment (mad) utilities,” http:
//processors.wiki.ti.com/ index.php/MAD-Utils-User-Guide,
2014.

[50] V. Cuppu, B. Jacob, B. Davis, and T. Mudge, “A performance
comparison of contemporary dram architectures,” in ACM
SIGARCH Computer Architecture News, vol. 27, pp. 222–
233, IEEE Computer Society, 1999.

[51] J. Wallen, “How to change the linux i/o scheduler to
fit your needs,” https://www.techrepublic.com/article/how-to-
change-the-linux-io-scheduler-to-fit-your-needs/ , 2017.

[52] S. Bergman, T. Brokhman, T. Cohen, and M. Silberstein,
“Spin: Seamless operating system integration of peer-to-peer
dma between ssds and gpus,” in USENIX ATC, 2017.

[53] B. Gu, A. S. Yoon, D.-H. Bae, I. Jo, J. Lee, J. Yoon, J.-
U. Kang, M. Kwon, C. Yoon, S. Cho, et al., “Biscuit: A
framework for near-data processing of big data workloads,” in
Computer Architecture (ISCA), 2016 ACM/IEEE 43rd Annual
International Symposium on, pp. 153–165, IEEE, 2016.

[54] S. Cho, C. Park, H. Oh, S. Kim, Y. Yi, and G. R. Ganger,
“Active disk meets flash: a case for intelligent ssds,” in
Proceedings of the 27th international ACM conference on
International conference on supercomputing, pp. 91–102,
ACM, 2013.

301

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 08,2020 at 02:44:53 UTC from IEEE Xplore. Restrictions apply.

[55] D. Tiwari, S. Boboila, S. S. Vazhkudai, Y. Kim, X. Ma,
P. Desnoyers, and Y. Solihin, “Active flash: towards energy-
efficient, in-situ data analytics on extreme-scale machines.,”
in FAST, pp. 119–132, 2013.

[56] A. De, M. Gokhale, R. Gupta, and S. Swanson, “Minerva:
Accelerating data analysis in next-generation ssds,” in Field-
Programmable Custom Computing Machines (FCCM), 2013
IEEE 21st Annual International Symposium on, pp. 9–16,
IEEE, 2013.

[57] Marvell, “High performance pcie ssd controllers,” https://
www.marvell.com/storage/ssd/88ss1092-93/ , 2017.

[58] A. M. Caulfield, L. M. Grupp, and S. Swanson, “Gordon: An
improved architecture for data-intensive applications,” IEEE
micro, vol. 30, no. 1, 2010.

[59] J. Ahn, D. Kwon, Y. Kim, M. Ajdari, J. Lee, and J. Kim,
“Dcs: a fast and scalable device-centric server architecture,”
in Proceedings of the 48th International Symposium on Mi-
croarchitecture, pp. 559–571, ACM, 2015.

[60] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting
phase change memory as a scalable dram alternative,” in ACM
SIGARCH Computer Architecture News, vol. 37, pp. 2–13,
ACM, 2009.

[61] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high
performance main memory system using phase-change mem-
ory technology,” in ACM SIGARCH Computer Architecture
News, vol. 37, pp. 24–33, ACM, 2009.

[62] G. Dhiman, R. Ayoub, and T. Rosing, “Pdram: A hybrid pram
and dram main memory system,” in 2009 46th ACM/IEEE
Design Automation Conference, pp. 664–669, IEEE, 2009.

[63] L. E. Ramos, E. Gorbatov, and R. Bianchini, “Page placement
in hybrid memory systems,” in Proceedings of the interna-
tional conference on Supercomputing, pp. 85–95, ACM, 2011.

[64] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu,
A. Memaripour, Y. J. Soh, Z. Wang, Y. Xu, S. R. Dul-
loor, et al., “Basic performance measurements of the in-
tel optane dc persistent memory module,” arXiv preprint
arXiv:1903.05714, 2019.

[65] G. Sun, D. Niu, J. Ouyang, and Y. Xie, “A frequent-value
based pram memory architecture,” in 16th Asia and South
Pacific Design Automation Conference (ASP-DAC 2011),
pp. 211–216, IEEE, 2011.

[66] M. K. Qureshi, M. M. Franceschini, and L. A. Lastras-
Montano, “Improving read performance of phase change
memories via write cancellation and write pausing,” in HPCA-
16 2010 The Sixteenth International Symposium on High-
Performance Computer Architecture, pp. 1–11, IEEE, 2010.

[67] W. Zhou, D. Feng, Y. Hua, J. Liu, F. Huang, and Y. Chen,
“An efficient parallel scheduling scheme on multi-partition
pcm architecture,” in Proceedings of the 2016 International
Symposium on Low Power Electronics and Design, pp. 344–
349, ACM, 2016.

[68] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan,
L. Lastras, and B. Abali, “Enhancing lifetime and security
of pcm-based main memory with start-gap wear leveling,”
in Proceedings of the 42nd annual IEEE/ACM international
symposium on microarchitecture, pp. 14–23, ACM, 2009.

[69] M. Jung, “Nearzero: An integration of phase change memory
with multi-core coprocessor,” IEEE Computer Architecture
Letters, vol. 16, no. 2, pp. 136–140, 2017.

302

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 08,2020 at 02:44:53 UTC from IEEE Xplore. Restrictions apply.

